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Introduction.

Springing from Heavisides operational calculus, the first use
of generalized functions was intimately connected with the
Laprace transform. It was not until L. Scawartz’s «Theorie des
Distributions» [6] had appeared that a rigorous theory was con-
structed for generalized functions or distributions as the elements
of a dual space. The operational calculus was however largely
omitted from this work. B. Vax Der Pov [9] compiled a most
complete work on the operational calculus, but not in the context
of distributions and Mixusixski [2] updated this in much of the
distribution point of view. The difficulty of using LarrLace trans-
forms remained that of existence of the transform even if the
unilateral transform was used and further the difficulty of
inversion. This author [4] succeeded in using the bilateral
transform for functions on R! to construct a space sufficiently
large to imbed the Scmwartz Space. In this paper we extend the
results of that paper to R” and obtain a rather complete chara-
cterization of this imbedding space.

We proceed in a manner analogous to that in [4]. {e=-#} is
a one parameter family of infinitely differentiable functions with
respect to feR” where z is in a polycylinder S in C”, and
an Ls-Distribution is defined to be a functional on this family
that is analytic with respect to the parameter and further we
require that if « is a complex scalar and F, G two such
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functionals then F .-t} G . ¢ t=(F+G) . ¢5-* and (aF). &% 1=
=F.(xe*'%). In a manner analogous to that for Scuwartz Dis-
tributions the derivative of such a functional is defined by
F'.es*=F.(e*%. For a properly defined Larrace Transform it
is clear that the transform provides an integral representation
for some Ls-Distributions and in turn an ordinary analytic
function representation. To construct the imbedding space we

begin with the space of functions on C” analytic in a polycy-

linder Sc C". Following the terminology used in [4] and by
other authors we shall, when convenient, refer to the inverse
Larrace Transform, symbolic or not, as an Ls-Distribution
rather than the functional.

2. Notation and Conventions.

C denotes the complex plane and C'=C><...><C with

the usual product topology. 2zeC® means z=(z,---,3,),
zi=wx;+1y;6 C. R denotes the real line and R*=R><... xR,
teR” means /= (4,.--,4,),5;6 R. For z,weC" define

n
z-wzz,zj-wj:w-z
j=1

w; being the complex conjugate. Two different absolute value
functions will be used, for 26 C* or zeR”, (|2)=(|21|,--+,]24])
and |z|=Vz.z and further R(z)=(R (%), ---,R ().

With the usual topology, R” is a HiserT space and if # is
in the dual then there is an nweR” such that n(f)=mn-¢ for all
teR". For any two such functionals » and = where n< =, let

S, )=1|zn<R@E <.

We also have

S=]]1z|% <R <s}.

Jj=t
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3. Ls-D Space-Topologies.

DermviTion 3.1, Let n and = be in the dual of R” such that
n<7 and S={z{n<R() <7} then if f(2) is analyticin S,
[/(2)]: is defined to be an Ls-Distribution whose value at e-=-¢
is f(2). Further f(2) is the Laprrace Transform of [f(&):.

Dermvition 3. 2. Let D” =% then D” £ is defined
gt
to be [21'--- 2} f(2); where a=(ay,---,a,) and z=/(z,---,z).

Derivition 3. 3. For an arbitrary S as in Definition 1, let
Sy be the space of Ls-Distributions with the topology induced
by uniform convergence on compact subset of S.

It is clear that for any S, S. is a complete linear space
closed with respect to the operator D* for all «. The following
theorems justify in part inducing the topology on the space of
Ls-D’s from the space of analytic functions. In particular we
show that when the distribution actually is determined by a
function on R” as the transform of that function then the induced
topology is compatible with a topology that might be defined on
the space of such functions on R”

For nw< < let Ly(n,r) denote the space of functions on R”

such that
- ~ 3.2 1z
IF = oy [ emr@ear]” <o
R}
where j5=(sy,---,7,) and each o; is either #» or ; and
R7[0,a)) > --- [0, a,) with @)= 4 o0 or — co correspondingly,
and 64; is the number of o/s thatare —co, ;=1,2,...,2". Let

n
IFl= X IF[;.
=1

J
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Turorem 3.4. Ly(n, ) #s a complete linear space, each F in
Ly, has a Laplace Transform, 1(z), which is analylic for z in

S(n,7). Further comvergence in Lo(n, <) implies uniform conver-
gence of the transforms on compact subsets of R.

Proor. From the identity

] 2"’ *
j e-EJF(;)d,}:Z(—l)be IR () de
Rﬂ .

j=1 R}

for any §{=(%,---,£) such that both sides exist and the ine-
qualities ¢ %< ¢ ”* for 1eR} and n£LEi <Lt it follows that

f(z)zf e®‘F(f)dt converges absolutely and is analytic for
Rn

26 S(n,r) by iterated application of the existence theorem for
n=1 (See pp. 240 [8]). It is clear that || || is a norm and that L,

is a linear space. The completeness of Ly(n,t) follows from the

completeness of Ly(n,n) and of Ly(r,7) and the uniqueness of
the limits. To prove uniform convergence write

<3

on
f(z)=fR”e‘”F(f)dt= Z (—l)bfj e tF () dt

j=1 R)l
and

f e—s-fF(t)dt=f et te s tF(dt.
R}

R}

Then by #» applications of the Cavcry-Scuwartz Inequality

A 112
j e—s.tF(t)dtlé[gj(z)][f |e‘j0‘-lF(t)|2dt:|
R? R}

where g.(2)= fI [2|R(2;)— ;7:[112. Then

i=1

/()| £ max |g:(2){[|F]
1<j<n

and hence if ||Fz|l~0 as £— c then |fi(s)| ~ O uniformly on
compact subset of S as £ — .
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CoroLLary 3. 4. Let 1, (z) be the transform of functions Frn(t)
in Lo(m,7), then |[fnlx =0 as |Fnl|>0 as m — o where

- oo 112
!]f][x=[jRnf(x—i—1y)|2dy] and n< x < 7.

Proor. By iterated application of theorem for #=1
(pp 245, [8])

f Ie_,,.,F(,)Pd;:f-|f(x+iy)12dy
R* R*

for F(#)eLy(n,7), f(2) the transform of F and n<x <v. Then
since

(—1)”ffie"‘"F(f)Pdté[l!FIIf]g
R}

the results follows.

4, Ls-Distribulions.

Dgrmarion 4.1. For any Ls-D, F,, define jfi. to be
(e f(2)]; where £2=(0,.--,4;,0;,---0).

Tueorem 4. 2. For any Ls-D, f, hi[fH_h —1]—D*{, -0 as
i

h; - 0 where « =(0,---,1,...,0).

Proor. By definition D*f;=[z;f(2)]: hence

’ 7 :

and since f(z) is bounded on compact sets and

ehisi 1z 22 h. 28
——~——_:h _‘l. —] J .o
h; ’[2! T ]

converges uniformly to O on compact sets as %; - 0 the proof
is camplete
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Tarorem 4.3, For any sequence {nle], comvergent to 1., of
Ls-D’s and arbitrary D*, D%4{, converges to D™ §,.

Proor. By definition ,.f; -/, as m — o if mf (&) —f(2) >0
uniformly on compact sets. Since D* is linear

D[ f (2))r=D*[ £, ()] — D= [ (2)]s
= [ IL=6f (2 —f(z))] .

J=1

n
For any «, ] g7 is bounded on compact sets so that
F=1

I G/ @ —f (@) - O
Jj=1

uniformly on compact sets if
mf (8)—f(2)) - 0.

Derivition 4.4. For any pair of Ls-D’s fi and g4, ff g
=[/(2)g (2] is called the Convolution Product.

We note that if f; and g; are determined by the Laprace
Transforms of F(7) and G (¥), respectively, then by the Convo-
lution Theorem for such transforms S (2) g(2) is the transform of

f F(t—u)Gw)du.
R'ﬂ

The definition of the convolution product is then consistent with
the usual definition for point functions. We also easily obtain
the following properties of this product.

Tueorem 4.5 For any pair of Ls-D’s f, and g and any
differential operator D*

(i) ft*gt=gt*ft
(i) D=+ gy)= (D= fo) * ge =1 % (D> go).
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Proor (7). By definition

frxgr=1/(@) g @)
=[g (=) (&)
=gi* [i

(¢7) Likewise, by definition

D= (f;+ g9 = [ 1= (/2 g(z))]

J=1

~ [<<I=I1 % > f<z>> ¢ (z)],

= (D*f)) = g

and the remainder follows from (7) applied to obtain

D*(fix g)=D*(g:* f)).
Tusorem 4. 6. If wl— 0, then for any gi,micxge—0

Proor. By definition ,,f; — 0 if and only if ,./(2) >0 uni-
formly on compact sets. But for fixed g(s), the ../ (z)g(e) -0
uniformly on compact sets, hence

mf:*g:->0-

A second product can be defined for those pairs of Ls—D’s
that are separately determined by polycylinders S,, and S,
where S=3S, <S,,, That is, f, is determined by f() and
g« by g(%) with veRM,ueR% Rmu>R==R",

Tueorem 4. 7. For f, on R® and g, on R™ there exists
a unique hy,teR® such that hy=[h(z)]: and h(z)=1()g () where
z=(%,%).

Proor. Without loss of generality we can assume
Z:(zly---)zn) and Cl:(zly"'rzm)y Z:-2:(%7!:)---12'7!) since
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wy+ug=mn. It is clear that %(z) is uniquely determined by f
and g and /%(g) is analytic in 2:S.

We denote this product by hi=/f,®g,, called the tensor
product. By way of consistency we see that if F(v), G(u) possess
transforms f(%) and g(%),v<R™,u:R™ then

h(z)=/ e=*- (0 F () G () d (4, + )

where #=(v,0)¢R" 4, = (0, u)¢ R”*, becomes

o

<j e-Zj-”F(v)dv> <f g—Z@-"G(u)a’u>=f(C1)g(Z_g).
™ Rz

CoroLLary 4. 7. 1. Theorems 4. 5. and 4. 6. are also true Jor
the lensor product.

Proor. This essentially is the same as for those theorems.

At this point we make some general observations about the
space of Ls—D’s. First it contains isomorphically those func-
tions on R* which possess transforms, invariant with respect
to differentiation and convolution where appropriate and with
compatible topologies. Included in the former category are the
elements of the group algebra LI(R*) of R, as a locally com-
pact abelian group and a subset of the space of infinity differen-
tiable functions on R” with compact support. It is well known
that L!(R”) does not have an identity element but by using the
entire ring of functions analytic in S we have adjoined an iden-
tity element and also have the advantage of a complete, sepa-
rable space under the topology of uniform convergenc on com-
pact sets. At the same time however, we see that we do have
sufficiently many «generalized functions». In particular the
Schwartz Distributions represented locally via the Riesz Repre-
sentation Theorem in terms of a constant function are not pre-
sent (see [1] or [6]). The construction of a «larger» space is
proceeded with in the next section. By contrast with the Schwartz
construction: the consistency of the definition of differentiation,
the continuity of the differential operator and both products are
rather easy consequences of their definitions.
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Finally we note that if we follow a construction analogous
to that used by MiLer [3], then the space is S,. That is, let

%={F|FsL‘(R”),f(z)=f ¢e~*'F(#)dt exists for som z:C}.

RM
For any compact subset e C, let

Xeg={F|FeX, for f(z) exists for all z:¢

and define ||F |l,=max|f(z)|, finally denote by ¥, the comple-

zeQ

tion of X, To continue

U,=lz| —x <R(e) < x,| 2|5 oo}
C,,:{@[ec Hx,U@O:)Hx,
GzU/QI@,]QI@ﬂkQIGZQS,

Ay is a Jordan Region}.

If now for each €eC,,# () is a B-algebra of functions in %, then
construct a projective spectrum (as defined by S. E. SiLva [7]).
If &, is the projective limit then , is homemorphic with the
space of all functions analytic in I,. Consequently we are still
led to consider the space of functions analytic in a strip S. Ina
subsequent paper we expect to study such a g-algebra in more
detail. For fixed w,teR” let L% be the set of functions F@®

such that e°-!'F(#) is in L2 for n< o< 7. It is clear that I.2
is a linear space, with convolution as a product and by Theo-
rem 3.4 each has a transform with the Plancherel Theorem
relating the norms of Fell and the mean-square norms of
their transforms.

5. Generalized Ls-Distributions.

As noted above, the space constructed is not sufficiently
rich to contain all the generalized functions which would corres-
pond to constant functions. We now proceed to remedy this,
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DerixiTion 5.1. An Ls-D, f;, is said to have point-values

F(#) for c<t<d if there exists a G(#) such that for some

a=(oy, -, ),

» \
re=(114 )&
J=1
D*G@®=F(@), c<t<d
where g(2) is the Laplace Transform of G (7).

For example [1]; has zero-point value for all #==(4,---,#"),
t;#0. Since

H@#H=1 ¢>0
0 otherwise

has as its transform

h(g)= <fI zj>—1
=1

and [1],:[<ﬁzj>h(z)] with ;t—a”—H(Q—=O if t=(,--, %),
F=1 ¢

1"";(>tn
0.

(1), is the «Dirac Delta Function» and the identity element
for the tensor product.

DermiTion 5.2. A sequence, {..f:} of Ls-D’s is called fun-
damental if for each open set, ¢ < < d, there exists an integer
M such that for m > M,

mfl_m—l-p_fty ﬁ=0)1)2)"'

is an Ls-D with zero point values in (¢,d). A fundamental
sequence of Ls-D’s will be abreviated F.S.S.
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Dermvition 5.3. Two F.S.S’s, | g} and {,f}, are said to

be similar if for each open set, ¢ < #< d, there exists an integer
M such that for m > M

mgt_mf.l
is an Ls-D with zero point-values in (c,d).

Levma 5.4. The similarity defined in Derxition 5.3 s a
Linear Equivalence velation and is invariant under differentiation,
and both products.

The proof is an immediate consequence of the definitions
and will be omitted.

Tueorem 5.5. The Equivalence classes under the similarity
relation are called Generalized Ls-D’s or G . Ls-D’s. The G - Lg-D’s
Jorm a linear space over the complex field with continuous differen-
tiation and with Convolution and Tensor products.

Turorem 5. 6. Let S be a non-degenerate strip in the complex
n-plane, C*. Then there is a subspace, %, of the space of G -Lgs-D’s
such that X is isomorphic with the Scuwarrz space (D). This
isomorphism is invariant with respect fo addition, scalar multipli-
cation, differentiation convolution and tensor multiplication.

The proof is in three parts.

(@) By definition a Scuwartz Distribution is a linear func-
tional on the space (D) of C* functions with compact supports
and is continuous on the elements of Cj for fixed A compact.
Let C*[a,,,6,,] denote the set of C® functions on R” whose
support is contained in [a,,64,]. Then for any ¢eC%[a,, byl
the value of the distribution T at ¢ is given by

T<¢>=<—1>'“'f[ F () D* ¢ (9 dt
By O]

where F(#) is continuous on [a,,ém], |a|=a;+ -+, and «
is determined by T and [a.,b,.]. Suppose now that m —
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such that —oc > @41 L@ < b X b, 11— oo. For each m there
isan F,, (9 and an .

Gu () =(—1)""Fp (), me Lt L b

=0 otherwise

mf(z):f e—z«fﬁ &% Gou (£) d1.
a b

s o ] j=1.

We now need to show that {,f;| is an F.S.S. and uniquely
determines a G -Ls-D. independent of the expanding sequence
of rectangles [@,.,6.,]. This G .Ls-D. isthe representative of T.

(6) Let I be an arbitrary open set (¢,d). There exists an
integer M such that for m >M, [a,.,b.]D(c,d). Let F,. (9,
Foitp(®)y mitym4px be the continuous functions and #-tuples of
integers for the representation of T on the intervals [a,.,6..],
[@mtpybmyp] respectively. Since C%[@m,0m] C C%[@misy bmisl,
for e C%[an,, b,

a

I%m==e—1ﬂ”“ﬂ/ F,. (D™ ¢ (1) d1

[am, bm—l

— (= 1) f Frip D" g (1) dt
Lam+4p > Oyt p]

or

(Fn (D™ ¢ () —(—1) » T 1 p (yD" " g (1)) dt.

Y8 s by

For «=(0,...,1,0,...,0) an n-tuple with all but one «; zeros
and that a;=1, let

Al y
DIF ()= | Flx)ds
45

and in general for « an n-tuple of non-negative integers, define
D ® interatively. For each pair of n-tuples o, .4,z let "
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= (Y1, y¥n), s =01, -+,0s) where 7, max O mtp25— mi)
0;=max (0, ma; — m4p%;). 1t follows that

0 =f [(— 1)lm+ﬁ°‘l—lm7‘|D—P"“l‘Fm(t)_D—P""Fm-f-P(t)]
[

m® s mb]

-Dm+1’“¢(t)dt=f QgD+ g (tyds.

(% s mb)

It is clear that since this is true for al ¢:C*[.a,.6],Qp()
is a polynomial in ¢, of degree P L4 —(1,---,1), for
md £1 £ ,6. We may now write

m+Pf(Z)—mf(Z)=/‘[ b]e's"<H 3,—'"+ij) Qz(d:
[ @y m j=1

-+ e—s-t<IIz;““’“")Gm+f(z)d;.

J=1

Lo 4 p%m +pb] = Lm@ mb]

The first integral is the transform of the derivative of a
function with zero point values interior to and exterior to the
open interval [,a,.6] and hence to the interval (¢,d). The
second integral is the transform of the derivative of a function
with zero-point values in the exterior of [4 @, m 4 0] — [m@, m0].
Hexce the constructed sequence |,.f:} isanF.S. S,

() Suppose [m&,.d], [s¢, »d] are two expanding sequences
whose unions cover R,. Let (.f) and (ng:) be the F.S.S/s
constructed as in part (a). Let 1 be an arbitrary bounded open
set in R”. There exisie integers M}, M2 such that ,, .,/ — . ft
is an Ls—D with zero point-valuds in I for m > M! and
mip@ —mge 18 an Ls—D with zero point-values in I for
m > M2. Further, there exists an integer M such that [.a,.0]
C [N, N9 for N=M2,m>xM. If K=max(M!, M3) the write.

mfo—m@t=mfe— ]+ e fi— 28] + rg:=mg4.

For m > K, the first difference on the right is an Ls-D with
zero point-values in I since {,f;] is an F. S. S. the second diffe-
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rence can be shown to be an Ls-D with zero point-values in [
by the method in part (4). The third difference is an Ls-D with
zero point-values in I since |,g} is an F. S. S. We have now
established that the correspondence between Scuwartz Distribu-
tions and G.Ls-D’s is one-to-one, The invariance properties
follow from Lemma 5.4,

6. Topologizing the Imbedding Space.

Dermurion 6.1 An F. S. S. (/] is said to have point-
values F(# in an interval (¢,d) if there exists an integer M
such that for m > M, ,.f; is an Ls-D with point values F(# in
(¢,d). A G.Ls-D is said to have point-values F(#) in an inter-
val (c,d) if there exists an F. S. S, in the equivalence class of
the G-Ls-D, possessing that property.

Dervition 6. 2. Let |/ ... {mlife,... be a sequence of
F. S. S’s. Denote the st element of the A" F. S. S, (O AT
Then the sequence of F. S. S/s is said to converge to the se-
quence Ls-D’s [,.filg if .f (@ — (mf (2)) uniformly on compact
sets as m, & — oo,

Derivition 6.3, Let Dy,---,D;,... be a sequence of G.Ls-D.’s.
Further, suppose L;,L,,... is a sequence of F. S. S’s each
having zero point-values exterior to [,4] and for each ;, L;
represents D; on [a,6]. That is, for some F. S. S, {m/fd;, in
Dj, Lj—{./il; has zero point-values in (@,6). Then if
Ly, L, -+ is convergent to L, in the sense of Definition 6.2,
Dy,---,D; is said to converge to Dy on (a,4), Dy being deter-
mined by L.

Turorem 6. 4. If a sequence of Scuwartz Distributions is con-
vergent in the open interval (a,b) in the Scuwartz space (D'), then
the sequence of G .Ls-D’s isomorphic to the respective SCHWARTZ
Distributions is convergent in the interior of every closed sub-interval

of (a,b).

Proov. Let Ty,--.,T;,---, bea sequence of Scuwartz Dis-
tributions convergent in (D’) in the interval (@,6). For any
closed sub-interval [¢,d] of (a,4) there exists a sequence of
representations.
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